

Particle physics: the flavour frontiers

Lecture 13: CP violation

Prof. Radoslav Marchevski
May 29nd 2024

Short recap and today's learning targets

Last time we discussed

- Phenomenology of neutral meson mixing and oscillation in the Standard Model
- Differences between the mixing parameters of different neutral mesons and its experimental implications (mass differences, width differences, time-dependent behaviour)
- Flavour tagging and how it can be used to experimentally measure flavour mixing and oscillation

Today you will ...

- learn about the different types of CP -violation in the Standard Model
- explore the phenomenology of CP -violation in charged and neutral meson decays (kaons, B mesons)
- learn about the experimental measurements of CP -violation in the different meson systems

CP violation

- CP asymmetries arise when two processes related by CP conjugation differ in their rates
- CP violation is related to a phase in the Lagrangian \Rightarrow all CP asymmetries must arise from interference effects

$$x \equiv \frac{\Delta m}{\Gamma}, \quad y \equiv \frac{\Delta \Gamma}{2\Gamma}, \quad \lambda_f \equiv \frac{q}{p} \frac{\bar{A}_f}{A_f}$$

- Full time evolution formula

$$2\hat{\Gamma}[P^0(t) \rightarrow f] = (1 + |\lambda_f|^2) \cosh(y\Gamma t) + (1 - |\lambda_f|^2) \cos(x\Gamma t) + 2\Re(\lambda_f) \sinh(y\Gamma t) - 2\Im(\lambda_f) \sin(x\Gamma t)$$

$$2\hat{\Gamma}[\bar{P}^0(t) \rightarrow f] = (1 + |\lambda_f|^{-2}) \cosh(y\Gamma t) + (1 - |\lambda_f|^{-2}) \cos(x\Gamma t) + 2\Re(\lambda_f^{-1}) \sinh(y\Gamma t) - 2\Im(\lambda_f^{-1}) \sin(x\Gamma t)$$

- Let's take B -meson decays as an example

$A_f: B^0 \rightarrow f$ amplitude

$\bar{A}_{\bar{f}}: \bar{B}^0 \rightarrow \bar{f}$ amplitude of the CP -conjugated process

CP violation: phases

- Two types of phases appear in the decay amplitude: CP -odd and CP -even phases
- CP -odd phases:
 - complex parameter that changes sign under CP transformation between A_f and $\bar{A}_{\bar{f}}$
 - linked to W^\pm boson interactions \Rightarrow known as weak phases
- CP -even phases:
 - phases can appear in decay amplitudes even if the Lagrangian parameters are all real
 - contributions from intermediate on-shell states
 - do NOT change sign under CP transformation between A_f and $\bar{A}_{\bar{f}}$
 - in meson decays the intermediate states are typically hadronic states with the same flavour quantum numbers driven by the strong interactions \Rightarrow known as strong phases

CP violation: amplitudes

- It's useful to factorise an amplitude in three parts

- magnitude a_i
- weak phase ϕ_i
- strong phase δ_i

- If there are two such contributions to an amplitude we can write

$$A_f = a_1 e^{i(\delta_1 + \phi_1)} + a_2 e^{i(\delta_2 + \phi_2)}$$

$$\bar{A}_{\bar{f}} = a_1 e^{i(\delta_1 - \phi_1)} + a_2 e^{i(\delta_2 - \phi_2)}$$

- We always choose $a_1 > a_2$

$$r_f = \frac{a_2}{a_1}, \quad \phi_f = \phi_2 - \phi_1, \quad \delta_f = \delta_2 - \delta_1$$

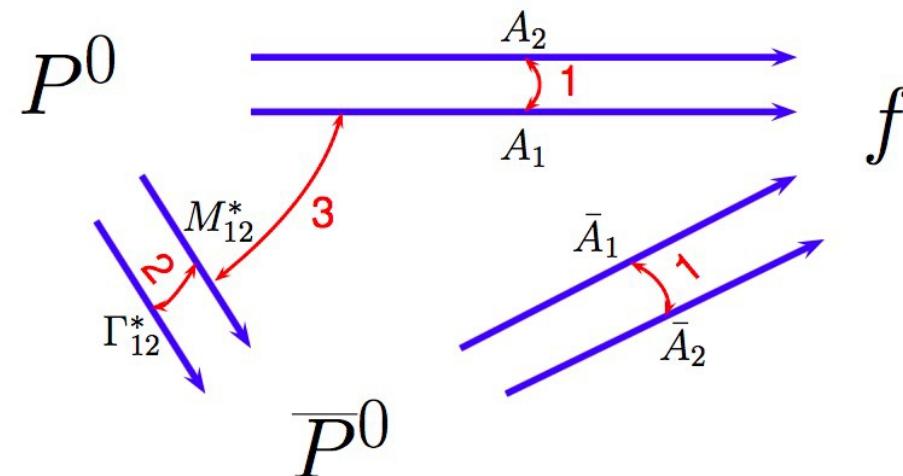
- For neutral meson mixing we can write

$$M_{B\bar{B}} = |M_{B\bar{B}}| e^{i\phi_M}, \quad \Gamma_{B\bar{B}} = |\Gamma_{B\bar{B}}| e^{i\phi_\Gamma}$$

$$\theta_B = \arg(M_{B\bar{B}} \Gamma_{B\bar{B}}^*) = \phi_M - \phi_\Gamma$$

Types of CP violation

- Each phase is convention-dependent but ϕ_f , δ_f and θ_B are physical
- Phenomenology of CP violation is very rich in neutral meson decays: mixing can contribute to the interference
- Three types of CP violation mechanisms depending on which amplitudes interfere
 - *In decay*: interference between two decay amplitudes
 - *In mixing*: interference between absorptive (on-shell intermediate states) and dispersive (off-shell intermediate state) mixing amplitudes
 - *In interference between decays with and without mixing*: interference between direct decay and first-mix-then-decay amplitude



CP violation

- CP violation in the kaon system is somewhat different
- Lifetimes of the two neutral kaons are very different $\tau_{K_L}/\tau_{K_S} \approx 550$
- As a consequence, it is useful to identify the mass eigenstates rather than the flavour-tagged decays
- We define

$$\epsilon_f = \frac{1 - \lambda_f}{1 + \lambda_f}, \quad \lambda_f = \frac{1 - \epsilon_f}{1 + \epsilon_f}$$

- Historically CP violation was first observed in the $K_L \rightarrow \pi^+ \pi^-$ decay and we denote $\epsilon_{\pi^+ \pi^-} = \epsilon_K$
- Neglecting direct CP violation in kaons ($A_f/\bar{A}_f - 1 \ll |q/p| - 1$)

$$\epsilon_f = \frac{1 - q/p}{1 + q/p}, \quad |\lambda_f| = \left| \frac{q}{p} \right|$$

CP violation in decay

$$\frac{|A_f|}{|\bar{A}_{\bar{f}}|} \neq 1$$

- In charged particle decays this is the only possible contribution to the CP asymmetry:

$$\mathcal{A}_f \equiv \frac{\Gamma(B^- \rightarrow f^-) - \Gamma(B^+ \rightarrow f^+)}{\Gamma(B^- \rightarrow f^-) + \Gamma(B^+ \rightarrow f^+)} = \frac{|\bar{A}_{f^-}/A_{f^+}|^2 - 1}{|\bar{A}_{f^-}/A_{f^+}|^2 + 1}$$

- Using the equation from slide 5 we obtain for $r_f \ll 1$

$$\mathcal{A}_f = 2r_f \sin \phi_f \sin \delta_f$$

- We need two decay amplitudes ($r_f \neq 0$) with different weak phases ($\phi_f \neq 0, \pi$) and strong phases ($\delta_f \neq 0, \pi$)

CP violation in decay: comments

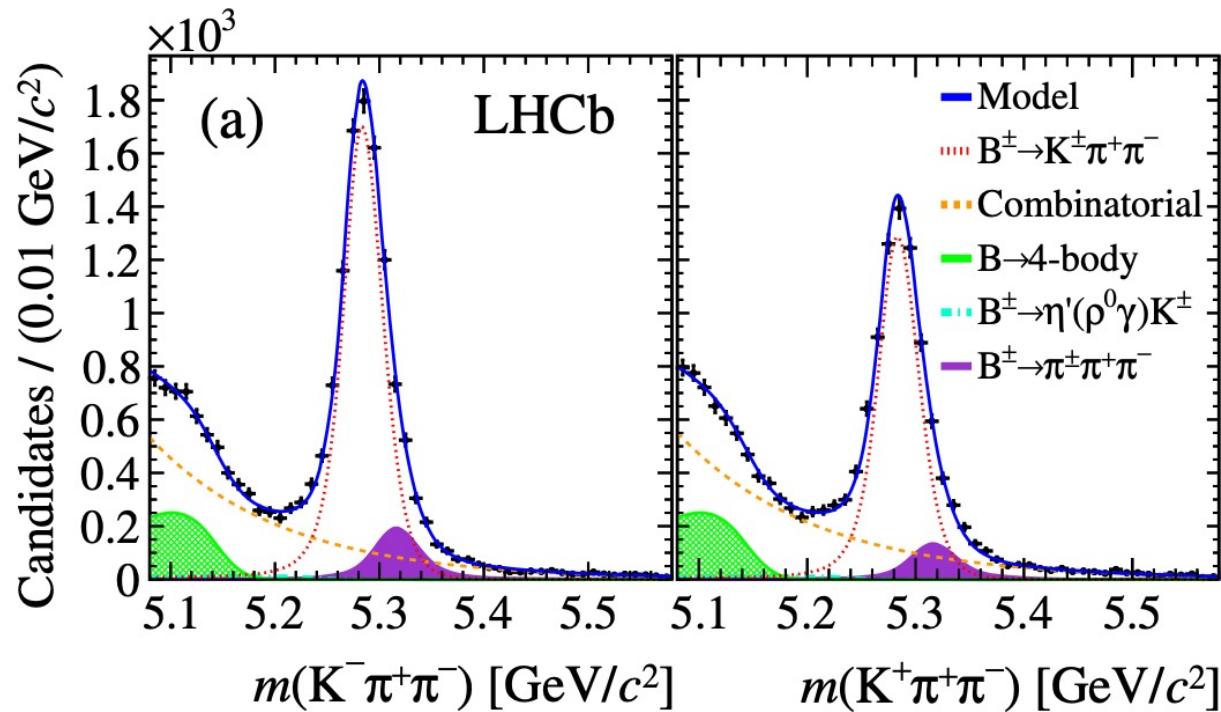
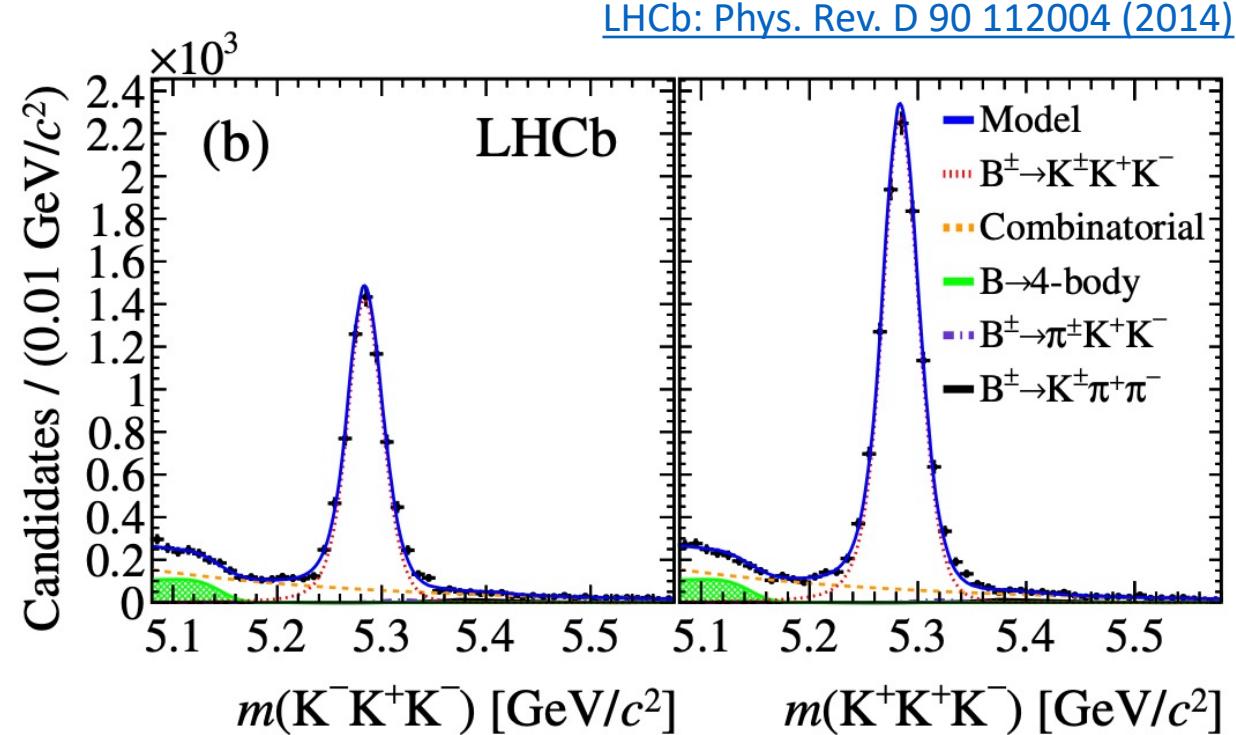
$$\mathcal{A}_f = 2r_f \sin \phi_f \sin \delta_f$$

- To have large CP asymmetry we need each of the three factors not to be small
- Similar expression holds for the contribution of CP violation in decay in neutral mesons decays but with additional contributions from mixing
- Another complication in neutral meson decays is that it is not always possible to tell the flavour of the decaying meson (e.g. if it's a B^0 or \bar{B}^0) which can be a problem or an advantage
- In general, strong phase is not calculable since it is related to QCD
 - not a problem if the aim is to demonstrate CP violation
 - problem if we want to extract the weak phase ϕ_f
 - in some cases, the strong phase can be measured experimentally, eliminating the source of theoretical uncertainty

CP violation in decay: measurement

- CP asymmetries in charged B mesons has been observed in several decay modes
- Example: charmless three-body decay modes $B^\pm \rightarrow K^\pm \pi^+ \pi^-$, $B^\pm \rightarrow K^\pm K^+ K^-$, $B^\pm \rightarrow \pi^\pm K^+ K^-$, $B^\pm \rightarrow \pi^\pm \pi^+ \pi^-$ measured by LHCb

$$\mathcal{A}_f \equiv \frac{\Gamma(B^- \rightarrow f^-) - \Gamma(B^+ \rightarrow f^+)}{\Gamma(B^- \rightarrow f^-) + \Gamma(B^+ \rightarrow f^+)}$$



CP violation in mixing

$$\left| \frac{q}{p} \right| \neq 1$$

- In decays of neutral mesons into flavour-specific final states ($\bar{A}_f = 0$, and consequently $\lambda_f = 0$)
- In semileptonic neutral meson decays, this is the only source of CP violation

$$\mathcal{A}_{\text{SL}}(t) \equiv \frac{\hat{\Gamma}(\bar{B}^0(t) \rightarrow l^+ X) - \hat{\Gamma}(B^0(t) \rightarrow l^- X)}{\hat{\Gamma}(\bar{B}^0(t) \rightarrow l^+ X) + \hat{\Gamma}(B^0(t) \rightarrow l^- X)} = \frac{1 - |q/p|^4}{1 + |q/p|^4}$$

- Using

$$\left(\frac{q}{p} \right)^2 = \frac{M_{P\bar{P}}^* - (i/2)\Gamma_{P\bar{P}}^*}{M_{P\bar{P}} - (i/2)\Gamma_{P\bar{P}}},$$

- We obtain for $|\Gamma_{B\bar{B}}/M_{P\bar{P}}| \ll 1$

$$\mathcal{A}_{\text{SL}}(t) = -|\Gamma_{B\bar{B}}/M_{P\bar{P}}| \sin(\phi_M - \phi_\Gamma)$$

CP violation in mixing

$$\mathcal{A}_{SL} = -|\Gamma_{B\bar{B}}/M_{P\bar{P}}| \sin(\phi_M - \phi_\Gamma)$$

- The $\mathcal{A}_{SL}(t)$ quantity which is an asymmetry of time-dependent decay rates, is actually time independent
- The calculation of $|\Gamma_{B\bar{B}}/M_{P\bar{P}}|$ is difficult because it depends on low-energy QCD
- The extraction of the value of the CP violating phase $\phi_M - \phi_\Gamma$ from a measurement of \mathcal{A}_{SL} involves, in general, large hadronic uncertainties
- CP violation in mixing is measured via semileptonic asymmetry

$$\delta_L \equiv \frac{\Gamma(K_L \rightarrow l^+ \nu_l \pi^-) - \Gamma(K_L \rightarrow l^- \nu_l \pi^+)}{\Gamma(K_L \rightarrow l^+ \nu_l \pi^-) + \Gamma(K_L \rightarrow l^- \nu_l \pi^+)} = \frac{1 - |q/p|^2}{1 + |q/p|^2} \approx 2\text{Re}(\epsilon_K)$$

- Different from that in the B system because the decaying meson is the mass eigenstate rather than flavour eigenstate and therefore has different dependence on q/p

CP violation in interference of decays with and without mixing

$$\mathcal{Im}(\lambda_f) \neq 0$$

- CP asymmetry in decays into final CP eigenstates
- Situation relevant in many cases is when one can neglect the effects of CP violation in decay and in mixing

$$|\bar{A}_{f_{CP}}/A_{f_{CP}}| \approx 1 \quad |q/p| \approx 1 \quad |\lambda_{f_{CP}}| = 1$$

- If we further consider the case where we can neglect y ($y \ll 1$) then

$$\mathcal{A}_{f_{CP}}(t) \equiv \frac{\Gamma(\bar{B}^0(t) \rightarrow f_{CP}) - \Gamma(B^0(t) \rightarrow f_{CP})}{\Gamma(\bar{B}^0(t) \rightarrow f_{CP}) + \Gamma(B^0(t) \rightarrow f_{CP})} = \mathcal{Im}(\lambda_{f_{CP}}) \sin(\Delta m_B t)$$

- These approximations are valid in cases where $|\Gamma_{B\bar{B}}/M_{P\bar{P}}| \ll 1$ and $a_2 \ll a_1$ which lead to

$$\frac{q}{p} = \frac{M_{B\bar{B}}^*}{|M_{B\bar{B}}^*|} = e^{-i\phi_M},$$

$$\frac{\bar{A}_{f_{CP}}}{A_{f_{CP}}} = e^{-2i\phi_A} \quad \phi_1 \text{ (associated with } a_1)$$

CP violation in interference of decays with and without mixing

$$\mathcal{Im}(\lambda_f) \neq 0$$

$$\frac{q}{p} = \frac{M_{B\bar{B}}^*}{|M_{B\bar{B}}^*|} = e^{-i\phi_M}, \quad \frac{\bar{A}_{f_{CP}}}{A_{f_{CP}}} = e^{-2i\phi_A} \quad \phi_1 \text{ (associated with } a_1)$$

$$\mathcal{Im}(\lambda_{f_{CP}}) = \mathcal{Im}\left(\frac{M_{B\bar{B}}^*}{|M_{B\bar{B}}^*|} \frac{\bar{A}_{f_{CP}}}{A_{f_{CP}}}\right) = -\sin(\phi_M + 2\phi_A)$$

- Measurement of a CP asymmetry in a process where these approximations are valid provides a direct probe of the weak phase between the mixing amplitude and the decay amplitude
- For the decays where we measure decays of the K_L and K_S mass eigenstates into final CP -even eigenstates we obtain

$$\mathcal{A}_{f_{CP}}^{\text{mass}} \equiv \frac{\Gamma(K_L \rightarrow f_{CP})}{\Gamma(K_S \rightarrow f_{CP})} = \left| \frac{1 - \lambda_{f_{CP}}}{1 + \lambda_{f_{CP}}} \right|^2 = |\epsilon_{f_{CP}}|^2$$

$$f_{CP} = \pi^+ \pi^- \Rightarrow \mathcal{A}_{\pi^+ \pi^-}^{\text{mass}} = |\epsilon_K|^2$$

The neutral kaon system

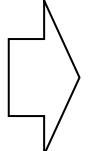
- $K^0 - \bar{K}^0$: (theory and) experiments $\rightarrow 1 - |q/p| \approx 7 \times 10^{-3}$ (**small CP violation in mixing**)
- Final state $f = \pi\pi$
 - Kinematical allowed phase space **much larger than any other** decay channel
 - CP eigenstate (eigenvalue +1)
 - $|A_{\pi\pi}| \approx |\bar{A}_{\pi\pi}|$ (**very small direct CP-violation** \rightarrow experimental and theoretical fact)
 - $\lambda_{\pi\pi}$ almost real (**small interference CP-violation** \rightarrow experimental and theoretical fact)
- Small CP violation in mixing $\rightarrow |P_L\rangle$ and $|P_H\rangle \sim$ CP eigenstates with eigenvalues +1 and -1
- $P_H \rightarrow \pi\pi$ very much suppressed than $P_L \rightarrow \pi\pi \implies P_L$ decays much faster than P_H
- $|P_L\rangle$ and $|P_H\rangle$ renamed $|K_S\rangle$ (short) and $|K_L\rangle$ (long)
 - $\Delta\Gamma = \Gamma_L - \Gamma_S \approx -\Gamma_S$, $\Gamma = (\Gamma_L + \Gamma_S)/2 \approx \Gamma_S/2$
 - $|K_L\rangle = p|K^0\rangle + q|\bar{K}^0\rangle \approx 2^{-1/2}(|K^0\rangle - |\bar{K}^0\rangle)$, $|K_S\rangle = p|K^0\rangle - q|\bar{K}^0\rangle \approx 2^{-1/2}(|K^0\rangle + |\bar{K}^0\rangle)$

The neutral kaon system

- Time evolution starting from pure $|K^0\rangle$ (\sim from pure $|\bar{K}^0\rangle$): **hyp.** $CP \sim$ conserved, decay in $\pi\pi$ only

$$H = \left(1 + |\lambda_f|^2\right) \cosh \frac{\Delta\Gamma t}{2} - 2\Re e \lambda_f \sinh \frac{\Delta\Gamma t}{2} \approx 2e^{-\frac{\Gamma_S t}{2}} \quad I = \left(1 - |\lambda_f|^2\right) \cos(\Delta m t) + 2\Im m \lambda_f \sin(\Delta m t) \approx 0$$

$$\Gamma[K^0(t) \rightarrow \pi\pi] = \frac{1}{2} |A_{\pi\pi}|^2 e^{-\Gamma t} (H + I) \sim |A_{\pi\pi}|^2 e^{-\Gamma_S t} \approx \frac{1}{2} |\langle \pi\pi | \mathcal{H} | K_S \rangle|^2 e^{-\Gamma_S t}$$

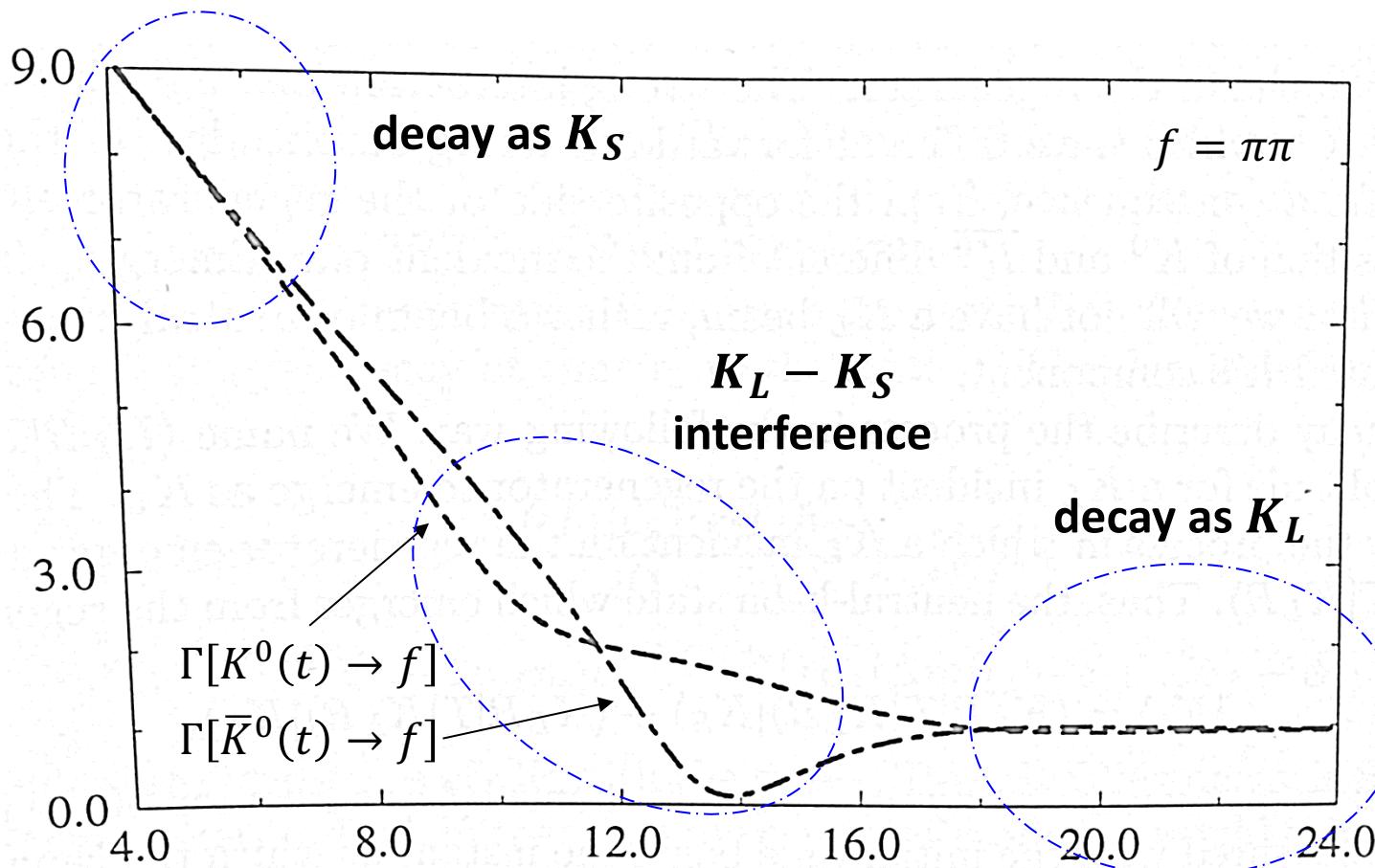
 **The kaon decays as K_S**

- Time evolution in general from pure $|K^0\rangle$ (f not necessarily CP eigenstate, CP violation allowed):

$$\Gamma[K^0(t) \rightarrow f] = \frac{1}{2} |A_f|^2 e^{-\Gamma t} (H + I) = \frac{|\langle f | \mathcal{H} | K_S \rangle|^2}{2(1 - \delta_L)} \left[e^{-\Gamma_S t} + |\eta_f|^2 e^{-\Gamma_L t} + 2|\eta_f| e^{-\Gamma t} \cos(\phi_f - \Delta m t) \right]$$

$$\eta_f \equiv \frac{\langle f | \mathcal{H} | K_L \rangle}{\langle f | \mathcal{H} | K_S \rangle} = |\eta_f| e^{i\phi_f} \xrightarrow{\text{physical phase}} \eta_f = \frac{1 + \lambda_f}{1 - \lambda_f} \rightarrow |\eta_f|^2 = \frac{\Gamma_L \text{BR}(K_L \rightarrow f)}{\Gamma_S \text{BR}(K_S \rightarrow f)} \quad \delta_L \equiv |p|^2 - |q|^2 \quad (\text{CP-violating parameter})$$

Neutral kaon time evolution



$$\tau_S = \frac{1}{\Gamma_S} \approx 9.0 \times 10^{-11} s$$
$$\tau_L = \frac{1}{\Gamma_L} \approx 5.2 \times 10^{-8} s$$
$$\Delta m = 0.53 \times 10^{10} s^{-1}$$
$$\delta_L = 3.3 \times 10^{-3}$$
$$|\eta_f| = \delta/\sqrt{2}$$
$$\phi_f = 43.5^\circ$$

$$|\langle f | \mathcal{H} | K_S \rangle|^2 = 10^6 \text{ scaling factor}$$

Neutral kaon decay modes: K_S

	Mode	Branching ratio (exp.)	Branching ratio (theo)
Non leptonic	$K_S \rightarrow \pi^0\pi^0$	$(30.69 \pm 0.05)\%$	
	$\pi^+\pi^-$	$(69.20 \pm 0.05)\%$	
	$\pi^+\pi^-\pi^0$	$(3.5^{+1.1}_{-0.9}) \times 10^{-7}$	
	$\pi^0\pi^0\pi^0$	$< 2.6 \times 10^{-8}$	1.9×10^{-9}
Non leptonic with photons	$\pi^+\pi^-\gamma$	$(1.79 \pm 0.05) \times 10^{-3}$	
	$\pi^0\gamma\gamma$	$(4.9 \pm 1.8) \times 10^{-8}$	
	$\gamma\gamma$	$(2.63 \pm 0.17) \times 10^{-6}$	
Semileptonic	$\pi^\pm e^\mp \nu_e$	$(7.04 \pm 0.08) \times 10^{-4}$	
	$\pi^\pm \mu^\mp \nu_\mu$	—	$\sim 4.7 \times 10^{-4}$
Other rare	$\pi^0 e^+ e^-$	$(3.0^{+1.5}_{-1.2}) \times 10^{-9}$	
	$\pi^0 \mu^+ \mu^-$	$(2.9^{+1.5}_{-1.2}) \times 10^{-9}$	
	$\mu^+ \mu^-$	$< 2.1 \times 10^{-10}$	5.1×10^{-12}
	$e^+ e^-$	$< 9 \times 10^{-9}$	2.1×10^{-14}

Neutral kaon decay modes: K_L (most relevant)

	Mode	Branching ratio (exp.)		Mode	Branching ratio (exp.)	
Non leptonic	$K_L \rightarrow \pi^0 \pi^0 \pi^0$	$(19.52 \pm 0.12)\%$	Semileptonic with γ	$K_L \rightarrow e^+ e^- \gamma$	$(9.4 \pm 0.4) \times 10^{-6}$	Semileptonic with γ
	$\pi^+ \pi^- \pi^0$	$(12.54 \pm 0.05)\%$		$\mu^+ \mu^- \gamma$	$(3.59 \pm 0.11) \times 10^{-7}$	
	$\pi^+ \pi^-$	$(1.967 \pm 0.010) \times 10^{-3}$		$\mu^+ \mu^-$	$(6.84 \pm 0.11) \times 10^{-9}$	
	$\pi^0 \pi^0$	$(0.864 \pm 0.006) \times 10^{-3}$		$e^+ e^-$	$(9^{+6}_{-4}) \times 10^{-12}$	
Semi-leptonic	$\pi^\pm e^\mp \nu_e$	$(40.55 \pm 0.11)\%$		$\pi^0 e^+ e^-$	$< 3.8 \times 10^{-10}$	Rare
	$\pi^\pm \mu^\mp \nu_\mu$	$(27.04 \pm 0.07)\%$		$\pi^0 \mu^+ \mu^-$	$< 2.8 \times 10^{-10}$	
	$\pi^0 \pi^\pm e^\mp \nu_e$	$(5.20 \pm 0.11) \times 10^{-5}$		$\pi^0 \nu \bar{\nu}$	$< 3 \times 10^{-9}$	
Non leptonic with γ	$\pi^+ \pi^- \gamma$	$(4.15 \pm 0.15) \times 10^{-5}$				
	$\pi^0 \gamma \gamma$	$(1.273 \pm 0.033) \times 10^{-6}$				
	$\pi^0 \gamma e^+ e^-$	$(1.62 \pm 0.18) \times 10^{-8}$				
	$\gamma \gamma$	$(5.47 \pm 0.04) \times 10^{-4}$				

Neutral kaons and CP violation

$K \rightarrow \pi\pi$ decays

- $K^0 \rightarrow \pi^+\pi^-$, $K^0 \rightarrow \pi^0\pi^0$
- $\pi\pi$ final states superposition of $|I, I_3\rangle = |0,0\rangle, |2,0\rangle$ (not $I = 1$ for Bose statistics)
- Amplitudes of K^0 to 2π states with total isospin I : $A_0 \equiv \langle 0,0 | \mathcal{H} | K^0 \rangle$, $A_2 \equiv \langle 2,0 | \mathcal{H} | K^0 \rangle$
- Isospin decomposition*: $A(K^0 \rightarrow \pi^+\pi^-) = \frac{1}{\sqrt{3}}(A_2 + \sqrt{2}A_0)$ and $A(K^0 \rightarrow \pi^0\pi^0) = \frac{1}{\sqrt{3}}(\sqrt{2}A_2 - A_0)$

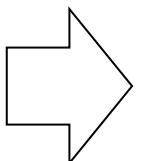
- It is possible to show that $A_{0,2}$ must be single-phase amplitudes (assuming CPT symmetry)

$$A_0 \equiv \langle 0 | \mathcal{H} | K^0 \rangle = a_0 e^{i(\delta_0 + \phi_0)}$$
$$A_2 \equiv \langle 2 | \mathcal{H} | K^0 \rangle = a_2 e^{i(\delta_2 + \phi_2)}$$

strong and weak phases

CP conserving amplitudes

$a_0 \sim 20a_2$ experimental
(and theoretical) fact



$$|A_0| = |\bar{A}_0|, |A_2| = |\bar{A}_2|$$

* Valid in the isospin limit (quarks d and u have equal masses)

Neutral kaons and CP violation

$K \rightarrow \pi\pi$ decays

- Experimentally K^0 decay as K_S or K_L
- CP violating quantities (here $|0\rangle$ and $|2\rangle$ mean $|0,0\rangle$ and $|2,0\rangle$):

$$\varepsilon \equiv \frac{\langle 0 | \mathcal{H} | K_L \rangle}{\langle 0 | \mathcal{H} | K_S \rangle} \Rightarrow \varepsilon = \frac{pA_0 + q\bar{A}_0}{pA_0 - q\bar{A}_0} = \frac{1 + \lambda_0}{1 - \lambda_0}$$

Because $|0\rangle$ is a CP eigenstate, $|\lambda_0| \neq 1$ and $\mathcal{J}m(\lambda_0) \neq 0$ denote CP violation in mixing and interference, respectively
 $\varepsilon \neq 0$ implies CP violation either in mixing and/or interference

$$\varepsilon' \equiv \frac{\langle 2 | \mathcal{H} | K_L \rangle \langle 0 | \mathcal{H} | K_S \rangle - \langle 0 | \mathcal{H} | K_L \rangle \langle 2 | \mathcal{H} | K_S \rangle}{\sqrt{2} \langle 0 | \mathcal{H} | K_S \rangle^2} \propto A_0\bar{A}_2 - A_2\bar{A}_0 = 2ia_0a_2e^{i(\delta_0+\delta_2)}\sin(\phi_0 - \phi_2)$$

$\varepsilon' \neq 0$ implies direct CP violation

Neutral kaons and CP violation

- Assuming $\langle 2|\mathcal{H}|K_S \rangle \ll \langle 0|\mathcal{H}|K_S \rangle$

$$\varepsilon \approx \frac{2\eta_{+-} + \eta_{00}}{3} \quad \text{with} \quad \eta_{+-} = \frac{\langle \pi^+ \pi^- |\mathcal{H}|K_L \rangle}{\langle \pi^+ \pi^- |\mathcal{H}|K_S \rangle} = |\eta_{+-}| e^{i\phi_{+-}} \quad \eta_{00} = \frac{\langle \pi^0 \pi^0 |\mathcal{H}|K_L \rangle}{\langle \pi^0 \pi^0 |\mathcal{H}|K_S \rangle} = |\eta_{00}| e^{i\phi_{00}}$$
$$\varepsilon' \approx \frac{\eta_{+-} - \eta_{00}}{3}$$

- $|\eta_{+-,00}|$ and $\phi_{+-,00}$ are observables measured
 - from the proper time evolution of the 2π decay rate
 - from the branching ratio of $K_{L,S}$ to 2π and $\tau_{L,S}$ ($|\eta_{+-,00}|$)
 - From regeneration effect*
- PDG fit to all the measurements to date (NA31, CPLEAR, NA48, KTeV, KLOE)

$$|\eta_{+-}| = (2.232 \pm 0.011) \times 10^{-3}$$

$$\phi_{+-} = (43.5 \pm 0.5)^\circ$$

($\phi_{+-} = \phi_{00}$ from CPT invariance)

$$|\eta_{00}| = (2.220 \pm 0.011) \times 10^{-3}$$

$$\phi_{00} = (43.7 \pm 0.6)^\circ$$

* Not discussed in these lectures

Neutral kaons and CP violation in mixing

- Measurement of $|\varepsilon|$ from the measurements of $|\eta_{+-,00}|$

$$|\varepsilon| \approx \frac{2|\eta_{+-}| + |\eta_{00}|}{3} \quad (\text{valid because } \phi_{+-} \approx \phi_{00} \text{ and } \mathcal{R}e(\varepsilon'/\varepsilon) \ll 1 \text{ see later})$$

- Measurement of ϕ_ε from

$$\phi_\varepsilon \approx \frac{2\phi_{+-} + \phi_{00}}{3} \quad (\text{valid because } \phi_{+-} \approx \phi_{00} \text{ and } \mathcal{R}e(\varepsilon'/\varepsilon) \ll 1 \text{ see later})$$

Regeneration effect (KTeV)

- PDG fit

$$|\varepsilon| = (2.228 \pm 0.011) \times 10^{-3} \quad \phi_\varepsilon = (43.5 \pm 0.5)^\circ$$

ϵ prediction in the Standard Model

- Relation between ε and δ

$$\left. \begin{aligned} \delta_L &\equiv |p|^2 - |q|^2 \rightarrow \lambda_0 \equiv \frac{q \bar{A}_0}{p A_0} = \sqrt{\frac{1-\delta}{1+\delta}} e^{i\theta} \\ \varepsilon &= \frac{1+\lambda_0}{1-\lambda_0}, \quad \text{and } \varepsilon = |\varepsilon| e^{i\phi_\varepsilon} \end{aligned} \right\} \quad \delta_L \approx 2\mathcal{R}e(\varepsilon) = 2|\varepsilon| \cos \phi_\varepsilon = (3.232 \pm 0.016) \times 10^{-3}$$

- δ predictable in SM

Using the formalism of the neutral meson oscillation and the relation valid for kaons $\Gamma_{12} \approx A_0^* \bar{A}_0$ is possible to demonstrate

$$\delta \approx -\frac{\mathcal{I}m(M_{12} A_0 \bar{A}_0^*)}{\Delta m (A_0 \bar{A}_0^*)}$$

- The amplitude $A_0 \propto V_{us}^* V_{ud}$ (tree-level) and the hadronic matrix element simplify in the ratio
- M_{12} is the dispersive amplitude of the box diagram
- Δm is measured

The neutral B system

- $B^0 - \bar{B}^0$: theory and experiments $\rightarrow |q/p| \approx 1$ (no CP violation in mixing)
- Final states
 - Almost the same for B^0 and \bar{B}^0
 - CP -eigenstates with both eigenvalues, or non CP eigenstates
 - Large variety of phase space availability
- **Small CP violation in mixing** $\rightarrow |P_L\rangle$ and $|P_H\rangle \sim CP$ eigenstates with eigenvalues +1 and -1
- Almost **no difference** between P_H and P_L decay (experimental and theoretical fact)
- $|P_L\rangle$ and $|P_H\rangle$
 - $\Delta\Gamma = \Gamma_L - \Gamma_H \approx 0$
 - We can speak in terms of B^0 (\bar{B}^0) decays.

The neutral B system: time-dependent asymmetries

- $B^0 - \bar{B}^0$: theory and experiments $\rightarrow |q/p| \approx 1$ (no CP violation in mixing), $\Delta\Gamma \approx 0$
- If f is a final states common to both B^0 and \bar{B}^0

$$\Gamma(B^0(t) \rightarrow f) = \frac{1}{2} |A_f|^2 e^{-\Gamma t} (H + I) \quad \text{where} \quad H = 1 + |\lambda_f|^2, \quad I = (1 - |\lambda_f|^2) \cos(\Delta m_B t) + 2\Im(\lambda_f) \sin(\Delta m_B t)$$
$$\Gamma(\bar{B}^0(t) \rightarrow f) = \frac{1}{2} |A_f|^2 e^{-\Gamma t} (H - I)$$

- **Time-dependent asymmetry**

$$\mathcal{A}(t) \equiv \frac{\Gamma(\bar{B}^0(t) \rightarrow f) - \Gamma(B^0(t) \rightarrow f)}{\Gamma(\bar{B}^0(t) \rightarrow f) + \Gamma(B^0(t) \rightarrow f)} = S_f \sin(\Delta m_B t) - C_f \cos(\Delta m_B t)$$

$$S_f = \frac{2\Im(\lambda_f)}{1 + |\lambda_f|^2}$$

$$C_f = \frac{1 - |\lambda_f|^2}{1 + |\lambda_f|^2}$$

- If f is a CP eigenstate, $\mathcal{A}(t)$ violates CP : $S_f \neq 0$ interference CP -violation, $C_f \neq 0$ direct CP -violation

Measurement of the CKM angle γ

- Weak phase between $b \rightarrow c$ (Cabibbo-favoured “fav”) and $b \rightarrow u$ (Cabibbo-suppressed “sup”) quark transitions

$$\gamma = \arg \left(-\frac{V_{ud} V_{ub}^*}{V_{cd} V_{cb}^*} \right)$$

- Measurement**

- processes receiving contributions from both Cabibbo-favoured and suppressed amplitudes
- study the interference between the two amplitudes

- Gronau-London-Wyler method (GLW)**

- Build observables of “fav”-“sup” amplitudes interference from the decays

$$B^+ \rightarrow \bar{D}^0 K^+ \quad B^+ \rightarrow D^0 K^+ \quad B^- \rightarrow \bar{D}^0 K^- \quad B^- \rightarrow D^0 K^- \quad B^\pm \rightarrow D_{CP} K^\pm$$

- D^0, \bar{D}^0 = flavour-specific D final state (e.g. (\sim) $D^0 \rightarrow K^-\pi^+$, $\bar{D}^0 \rightarrow K^+\pi^-$)

- D_{CP} = CP -eigenstate D final state (e.g. $\pi^+\pi^-, K^+K^-, K_S\pi^0, \dots$)

N.B. no need to study time-dependent asymmetries (charged B mesons)

Measurement of the CKM angle γ

- Only 1 tree-level amplitude in “fav” and “sup”

$$|A_{+\bar{D}}| = |A_{-D}| \equiv |A_{fav}|$$

$$|A_{+D}| = |A_{-\bar{D}}| \equiv |A_{sup}|$$

- CP - conservation in strong/em interactions

$$\delta_{+\bar{D}} = \delta_{-D} \equiv \delta_f$$

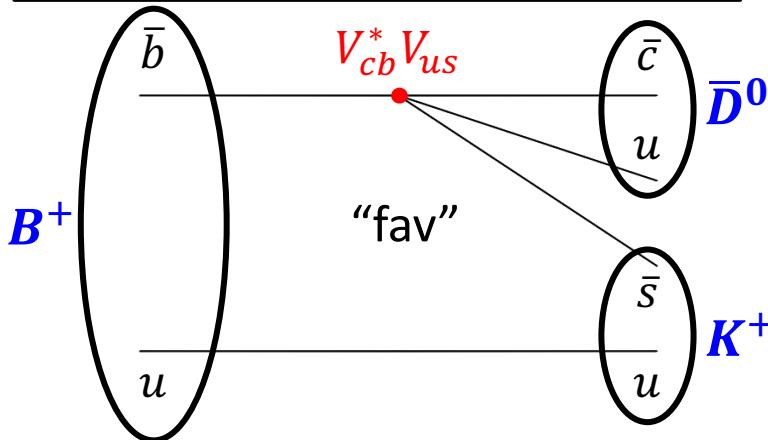
$$\delta_{+D} = \delta_{-\bar{D}} \equiv \delta_s$$

- Notation

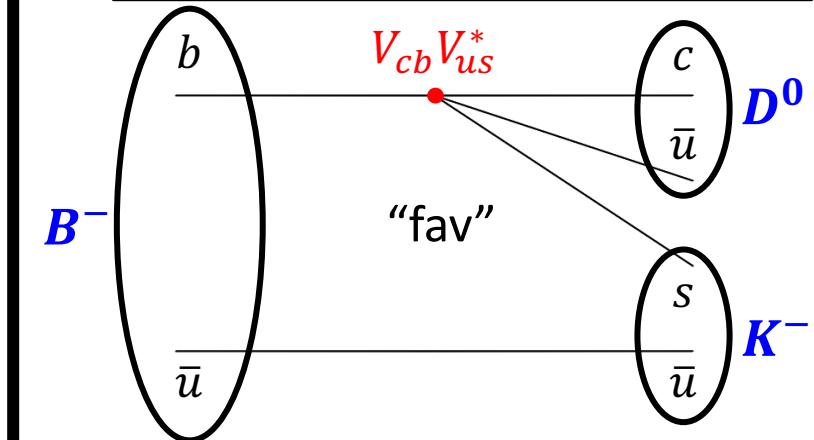
$$r_B \equiv |A_{sup}|/|A_{fav}|$$

$$\delta_B \equiv \delta_s - \delta_f$$

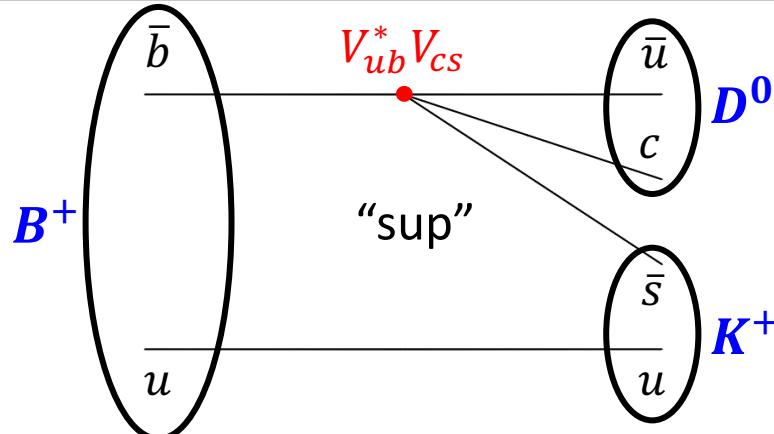
$$A(B^+ \rightarrow \bar{D}^0 K^+) = |A_{+\bar{D}}| e^{i\delta_{+\bar{D}}}$$



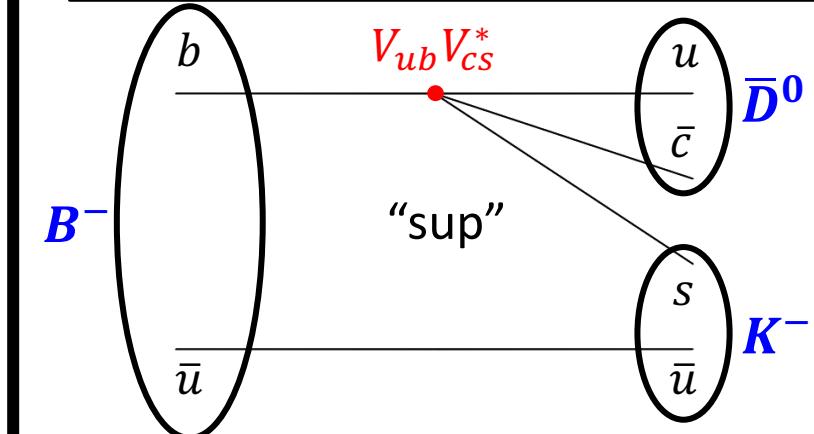
$$A(B^- \rightarrow D^0 K^-) = |A_{-D}| e^{i\delta_{-D}}$$



$$A(B^+ \rightarrow D^0 K^+) = |A_{+D}| e^{i\gamma} e^{i\delta_{+D}}$$



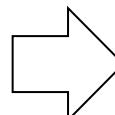
$$A(B^- \rightarrow \bar{D}^0 K^-) = |A_{-\bar{D}}| e^{-i\gamma} e^{i\delta_{-\bar{D}}}$$



Measurement of the CKM angle γ

$$B^\pm \rightarrow D_{CP} K^\pm$$

- hyp. 1: no D^0 oscillation
- hyp. 2: no CP violation in D decay



$$A(B^+ \rightarrow D_{CP\pm} K^+) = \frac{1}{\sqrt{2}} [A(B^+ \rightarrow D^0 K^+) \pm A(B^+ \rightarrow \bar{D}^0 K^+)]$$

$$A(B^- \rightarrow D_{CP\pm} K^-) = \frac{1}{\sqrt{2}} [A(B^- \rightarrow D^0 K^-) \pm A(B^- \rightarrow \bar{D}^0 K^-)]$$

Observables

$$R_{CP\pm} \equiv 2 \frac{\Gamma(B^- \rightarrow D_{CP\pm} K^-) + \Gamma(B^+ \rightarrow D_{CP\pm} K^+)}{\Gamma(B^- \rightarrow D^0 K^-) + \Gamma(B^+ \rightarrow \bar{D}^0 K^+)} = 1 + r_B^2 \pm 2r_B \cos \delta_B \cos \gamma$$

$$\mathcal{A}_{CP\pm} \equiv \frac{\Gamma(B^- \rightarrow D_{CP\pm} K^-) - \Gamma(B^+ \rightarrow D_{CP\pm} K^+)}{\Gamma(B^- \rightarrow D_{CP\pm} K^-) + \Gamma(B^+ \rightarrow D_{CP\pm} K^+)} = \frac{\pm 2r_B \sin \delta_B \sin \gamma}{1 + r_B^2 \pm 2r_B \cos \delta_B \cos \gamma}$$

$$r_B = \frac{\Gamma(B^- \rightarrow \bar{D}^0 K^-)}{\Gamma(B^- \rightarrow D^0 K^-)} = \frac{\Gamma(B^+ \rightarrow D^0 K^+)}{\Gamma(B^+ \rightarrow \bar{D}^0 K^+)}$$

Measurement of the CKM angle γ

- **Gronau-London-Wyler method (GLW)**
 - Experimental difficulty due to small r_B leading to large uncertainty
 - Angular solution up to a four – fold ambiguity
 - D^0 oscillation cannot be fully neglected
- **GLW example (BaBar)**
 - Measure $R_{CP+}, R_{CP-}, \mathcal{A}_{CP+}, \mathcal{A}_{CP-}$
 - Extract the parameters γ, δ_B, r_B
 - Decays: $B^\pm \rightarrow Dh^\pm$ with $h = K, \pi$

D_{CP+}	$[K^+K^-]_D h^\pm$	$[\pi^+\pi^-]_D h^\pm$
D_{CP-}	$[K_S\pi^0]_D h^\pm$	$[K_S\phi]_D h^\pm$
Non - CP	$[K^-\pi^+]_{D^0} h^-$	$[K^+\pi^-]_{\bar{D}^0} h^+$

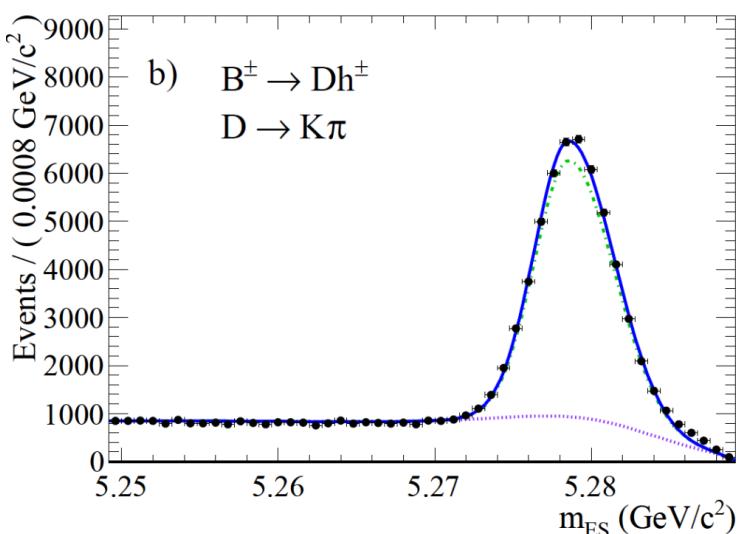
$(K_S \rightarrow \pi^+\pi^-, \phi \rightarrow K^+K^-, \omega \rightarrow \pi^+\pi^-\pi^0)$

Measurement of the CKM angle γ

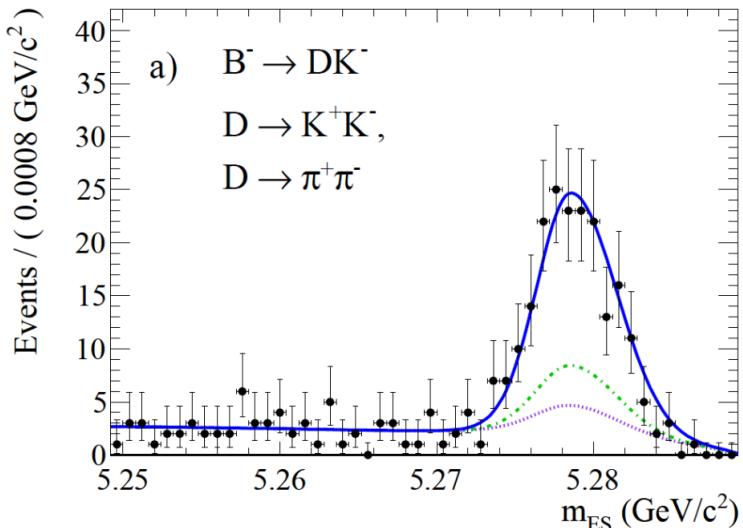
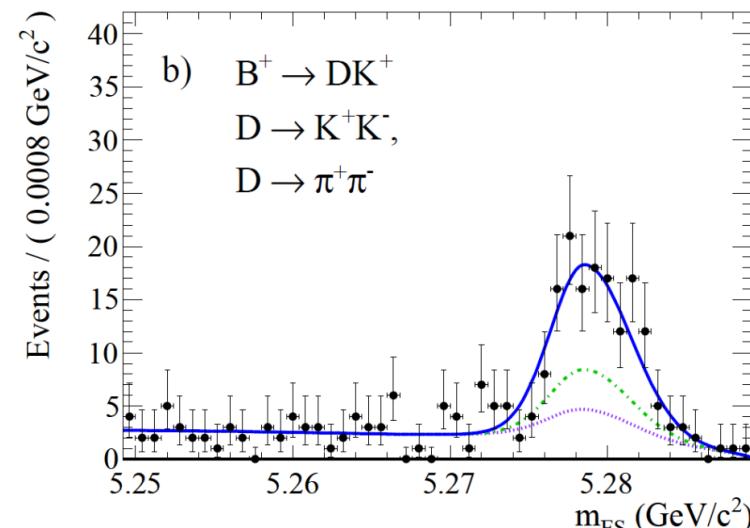
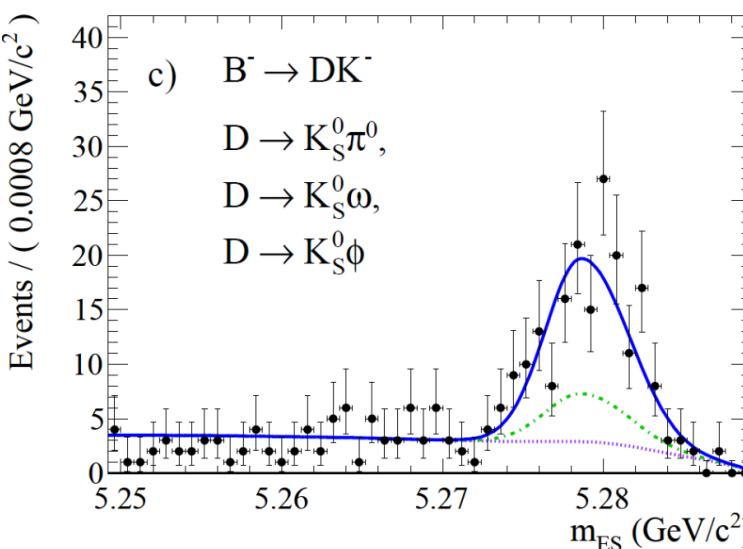
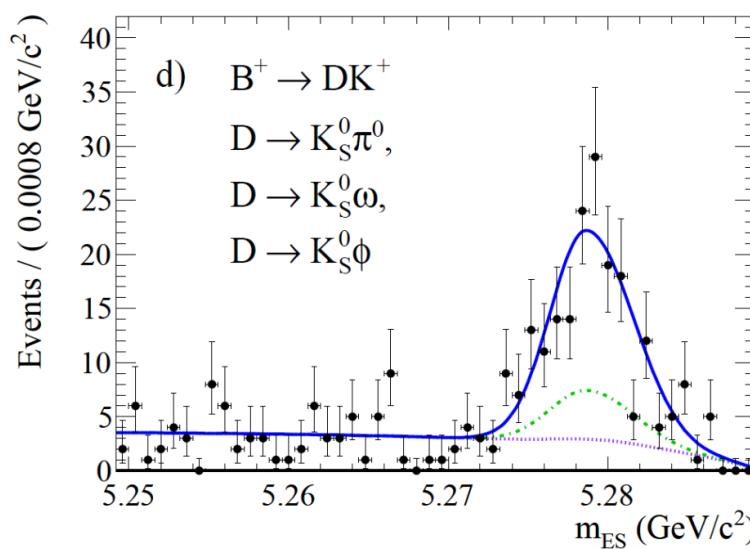
PRD 82 (2010) 072004

- **GLW example (BaBar)**

D^0 mode	$N(B^\pm \rightarrow DK^\pm)$	$N(B^\pm \rightarrow D\pi^\pm)$
K^+K^-	367 ± 27	4091 ± 70
$\pi^+\pi^-$	110 ± 9	1230 ± 41
$K_S^0\pi^0$	338 ± 24	4182 ± 73
$K_S^0\omega$	116 ± 9	1440 ± 45
$K_S^0\phi$	52 ± 4	648 ± 27
$K^-\pi^+$	3361 ± 82	44631 ± 232



$$m_{ES} = \sqrt{(s/2 + \mathbf{p}_{ee} \cdot \mathbf{p}_B)^2/E_{ee}^2 - p_B^2},$$



Measurement of the CKM angle γ

[PRD 82 \(2010\) 072004](#)

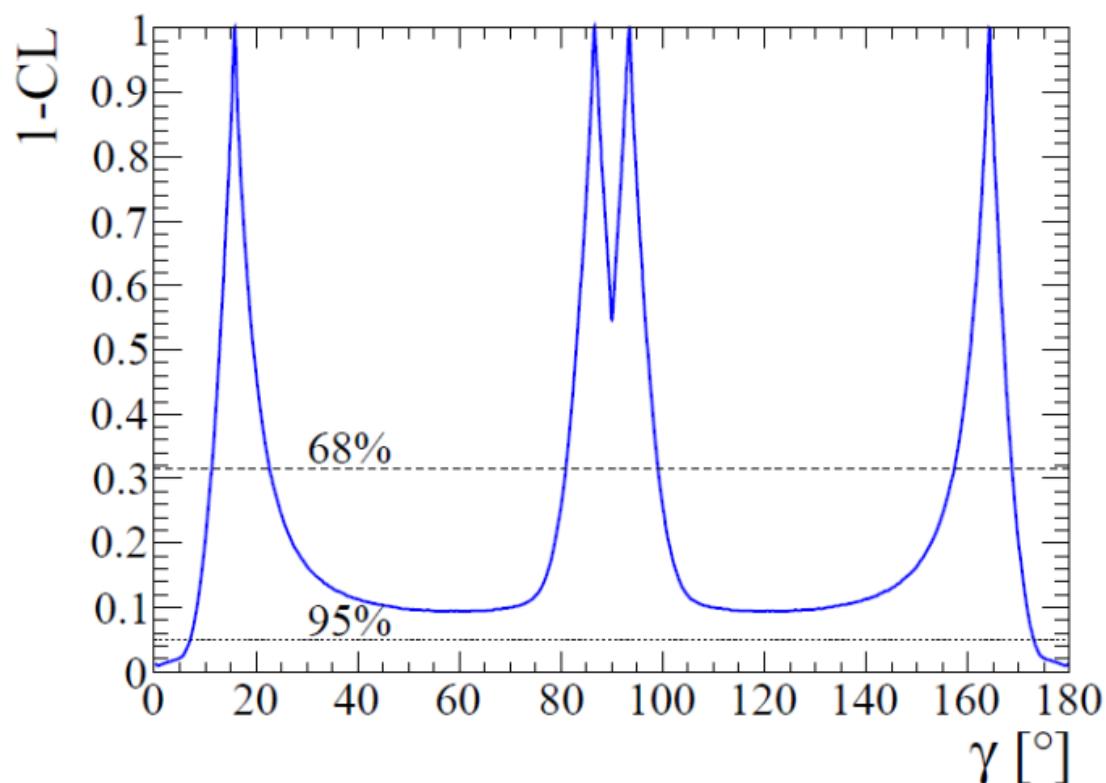
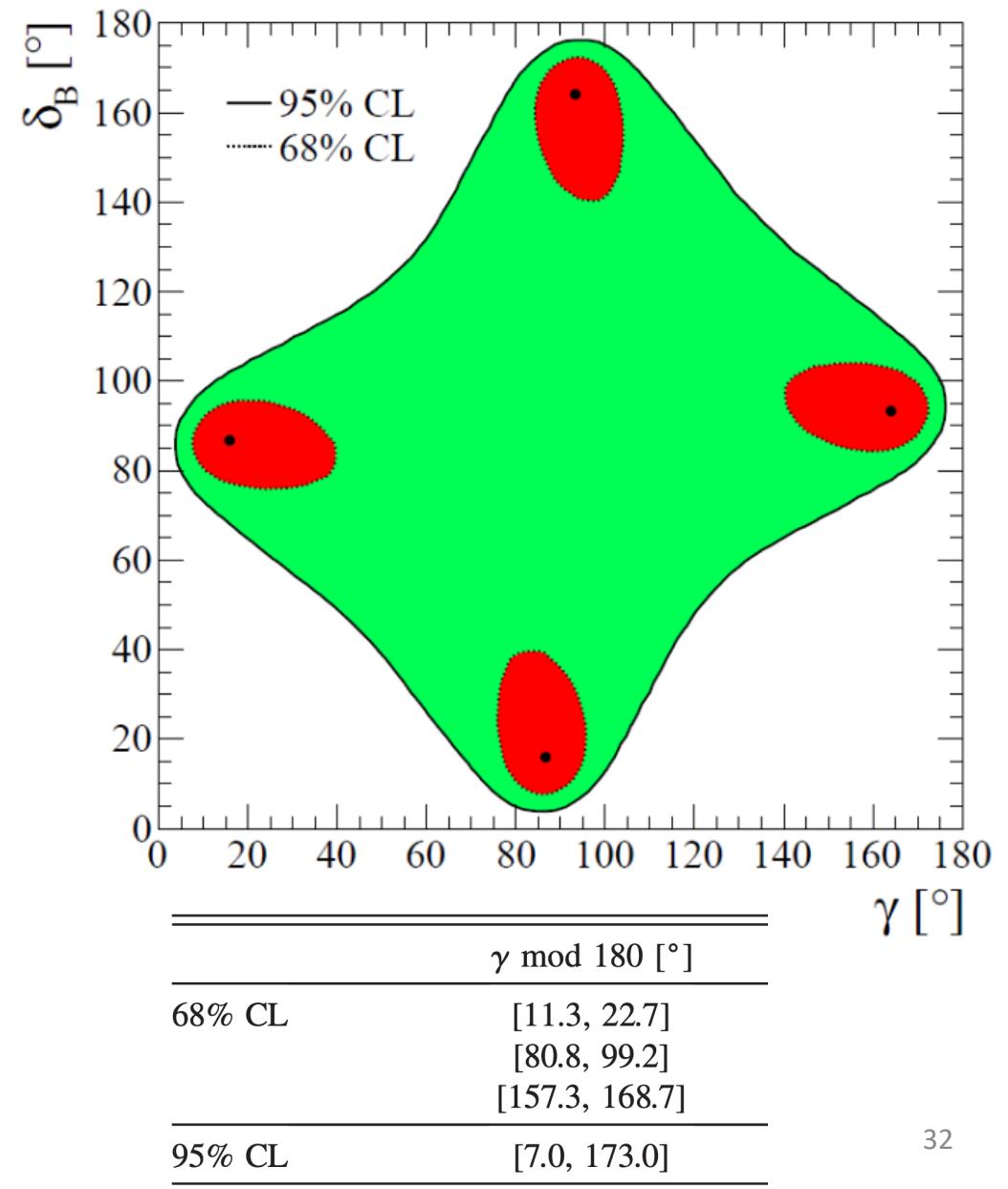
- **GLW example (BaBar)**

$$A_{CP+} = 0.25 \pm 0.06(\text{stat}) \pm 0.02(\text{syst}),$$

$$A_{CP-} = -0.09 \pm 0.07(\text{stat}) \pm 0.02(\text{syst}),$$

$$R_{CP+} = 1.18 \pm 0.09(\text{stat}) \pm 0.05(\text{syst}),$$

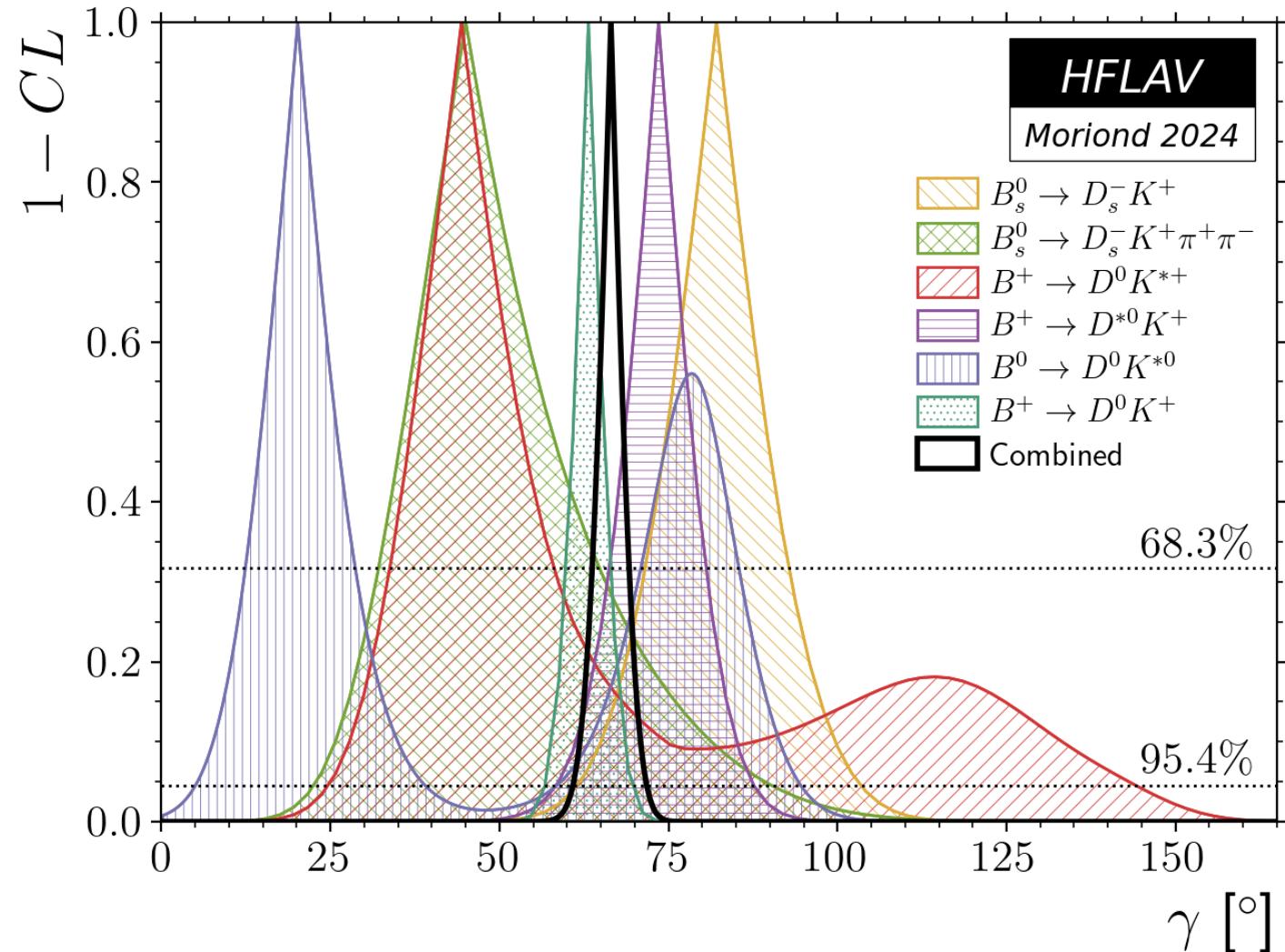
$$R_{CP-} = 1.07 \pm 0.08(\text{stat}) \pm 0.04(\text{syst}).$$



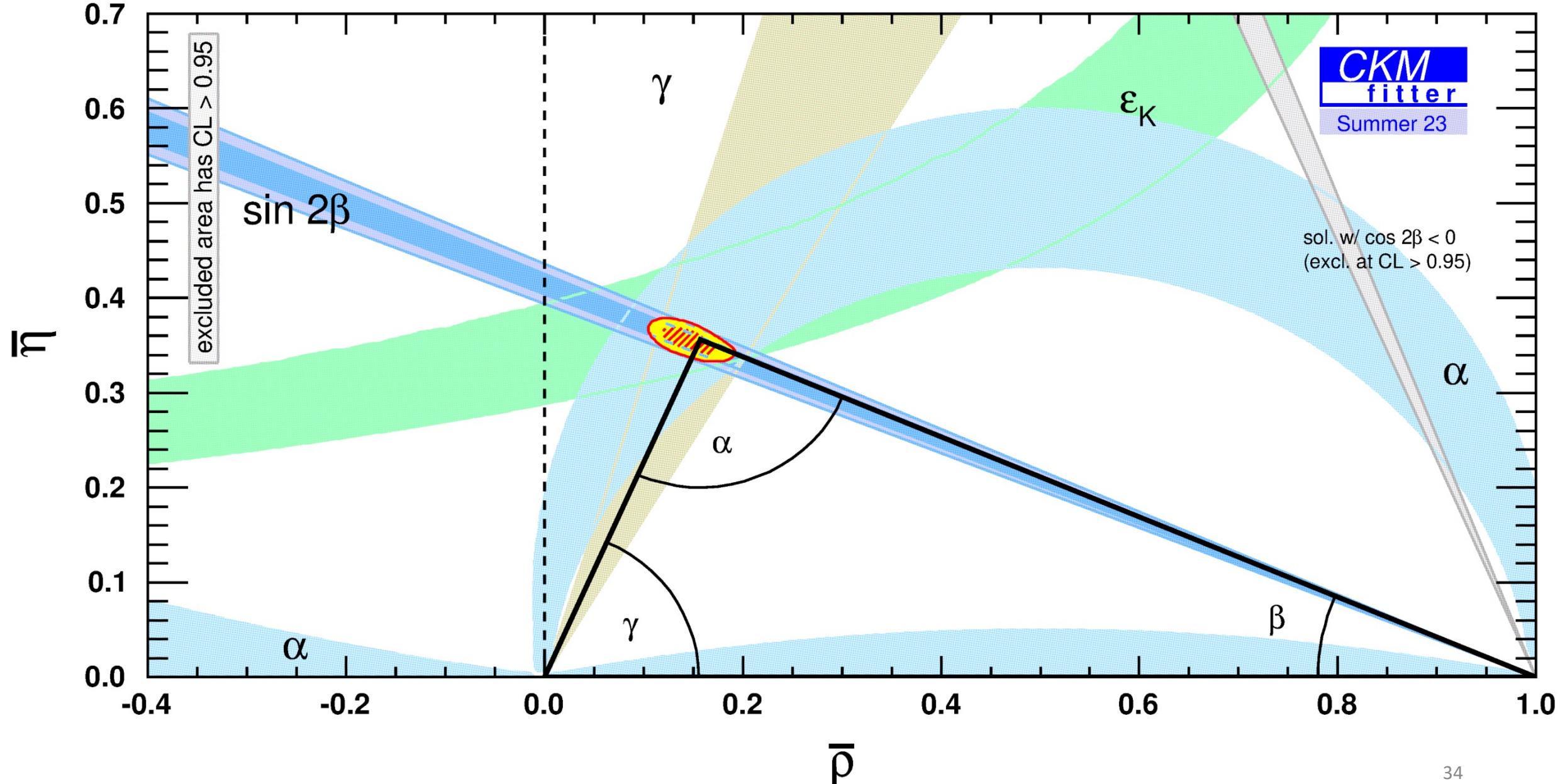
Measurement of the CKM angle γ : combination

- Other methods are analysis of multibody decays of D mesons (Dalitz analysis)
- Combinations of the results make use of all the possible ratios from various types of methods

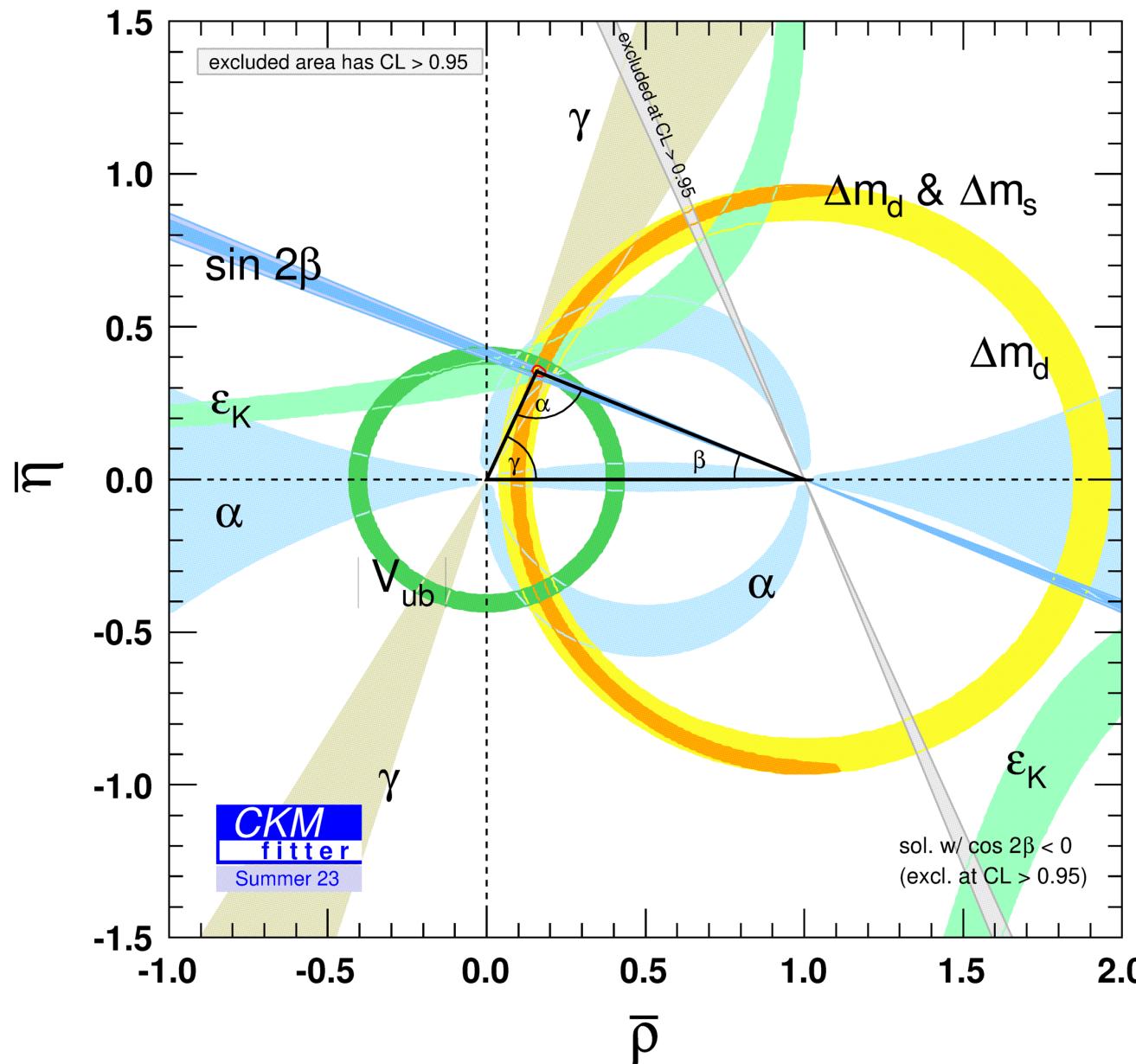
$$\gamma = (65.9^{+3.3}_{-3.5})^\circ$$



The CKM angle γ and the unitarity triangle



CKM fit (CKMFitter)



$$A = 0.8215^{+0.0047}_{-0.0082}$$

$$\lambda = 0.22498^{+0.00023}_{-0.00021}$$

$$\bar{\rho} = 0.1562^{+0.0112}_{-0.0040}$$

$$\bar{\eta} = 0.3551^{+0.0051}_{-0.0057}$$

$$J = (3.115^{+0.047}_{-0.059}) \times 10^{-5}$$

Wolfenstein parameters

Jarlskog invariant

68% CL

Summary of Lecture 13

Main learning outcomes

- What are the different types of CP -violation in the Standard Model
- Phenomenology of CP -violation in charged and neutral meson decays (kaons, B mesons)
- Experimental measurements of CP -violation in the different meson systems